

burkert

A rotork Brand

Fine Controls have been supplying process controls & instrumentation equipment since 1994, & now serves an ever expanding customer base, both in the UK & globally.

We offer a full range of valve & instrumentation products & services, with our product rangerepresenting leading technologies & brands:

Flow: Flow Meters & Transmitters, Flow Switches, Flow Control Valves & Batch Control Systems

Temperature: Temperature Probes & Thermowells, Temperature ransmitters, Temperature Regulators & Temperature Displays

Level: Level Transmitters & Switches

Pressure: Pressure Gauges & Transmitters, Precision & High Pressure Regulators & I-P Converters, Volume boosters.

Precision Pneumatics: Pressure Regulators, I-P Converters, Volume Boosters, Vacuum Regulators

Valves: Solenoid & Pneumatic Valves, Control Valves & Positioners, Actuated Ball, Globe or Diaphragm Valves & Isolation Valves

Services: Repair, Calibration, Panel Build, System Design & Commissioning

A rotorik Brand

Honeywell

Baumer Group

Fine Controls (UK) LTD, Bassendale Road, Croft Business Park, Bromborough, Wirral, CH62 3QL UK Tel: 0151 343 9966 Email: sales@finecontrols.com

Mass Flow Meter (MFM) for Gases

- Bypass MFM with capillary technology for nominal flow rates from 5 ml_N/min to 10 l_N/min
- Applicable for aggressive gases
- Fieldbus option

Type 6013

2/2-way valve

Type 8700 can be combined with...

Type 1150 Multi-channel program controller

3/2 or 2/2way valve

Mass flow meters are used in process technology for the direct measurement of the mass flow of gases. In case of volumetric flow meters, it is necessary to measure the temperature and the pressure either the density, because gases change their density or rather their volume depending on the pressure. The measurement of the mass flow, on the other hand, is independent of the pressure and the temperature.

The digital mass flow meter Type 8700 uses a classic bypass sensor (see the description on page 2). The actual flow is given as an analog output signal or could be read out over RS-communication, also fieldbus devices are available. Type 8700 can optionally be calibrated for two different gases, the user is able to switch between these two gases.

MassFlowCommunicator Communications software

The materials of the parts that come into contact with the medium are selected according to customer specification so that the unit can be operated with the complete range of standard process gases.

Typical application areas are gas flow measurement in:

- Test benches
- Environmental technology
- Gas consumption metering
- Analytical equipment

Technical data				
Full scale range ¹⁾	5 to 10,000 ml _N /min	Power supply	24V DC ±10 %	
(Q _{nom})	N ₂ equivalent	Voltage tolerance		
Operating media	Neutral or aggressive gases, others on request	Residual ripple	<2 %	
Max. operating pressure (inlet pressure)	10 bar (145 psi)	Power consumption	max. 2.5 W, max. 5 W (Fieldbus version)	
Calibration medium	Operating gas or N ₂ with conversion factor	Output signal	0-5 V, 0-10 V, 0-20 mA or 4-20 mA	
Medium temperature	-10 to +70°C	Max. current (volt. output) Max. load (current output)	10 mA 600 Ω	
Ambient temperature	-10 to +50°C	Fieldbus communication	PROFIBUS-DP, DeviceNet, CANopen, RS232/485 (RS Interface with adapter)	
Accuracy	±1.5% o.R. ±0.3% F.S.	Fieldbus communication		
(after 30 min. warm up time)		Protection class	IP40	
Linearity	± 0.1% F.S.	Dimensions [mm]	See drawings	
Repeatability	± 0.1% F.S.		ca. 750 g (stainless steel)	
Control range	1:50	Total Weight		
Response time (t _{assu})	<3 s	Mounting position	Horizontal or vertical	
Body material	Stainless steel	Light emitting diode display	Indication for Power, Limit (with analog signals)/	
Electronic Housing	PC (Polycarbonate)	(default, other functions possible)	Communication (with fieldbus) and Error	
Sealing material	FKM, EPDM, FFKM	Binary input	Two	
Port connections	NPT 1/4, G 1/4, sub-base or screw-in fitting, others on request	(default, other functions possible)	1. not assigned 2. not assigned	
Electrical connection	Plug Sub D 15-pin Plug M12 (DeviceNet, CANopen) 5-pin Socket M12 (PROFIBUS-DP) 5-pin	Binary output (default, other functions possible)	One relay-output for 1. Q _{nom} almost reached max. load: 25V, 1A, 25VA	

 $^{\scriptscriptstyle 1)}$ at standard conditions 1.013 bar (a) and 0°C

Measurement principle

Measurement is based on the bypass principle. A laminar flow element in the main channel generates a small pressure drop. This drives a small flow, proportional to the main flow through the bypass (sensor tube).

Two heater resistors, which are connected in a measuring bridge, are wound on this narrow stainless steel tube. In the zero-flow state, the bridge is balanced, but with flow, heat is transported in the flow direction and the bridge becomes unbalanced.

The dynamics of the measurement is determined by the tube walls, which act as a thermal barrier. Through use of suitable software in the controller, measuring times are obtained that are adequate for a large part of applications (in the range of a few seconds).

With contaminated media, we recommend to install filter elements upstream. This avoids changes in the division ratio between main flow and sensor tube, as well as changes in the heat transmission caused by deposits on the walls of the sensor tube.

With these sensors, even aggressive gases can be controlled, because all essential parts in contact with the medium are fabricated in stainless steel. With this sensor principle it is also possible to convert between different gases. In the table you will find a choice of factors, others on request.

$Q(Gas) = f x Q(N_2)$

Gas	Factor f
N ₂	1.00
Air	1.00
O ₂	0.98
H ₂	1.01
Ar	1.4
He	1.42
CO ₂	0.77

By using the gas factors it is possible that the accuracy is not within the datasheet specification. For applications which need high accuracy it is recommended to calibrate under application conditions.

The compatibility of the sealing materials of the MFMs should be checked before use with another gas.

Notes regarding the selection of the unit

The decisive factors for the perfect functioning of a MFM within the application are the fluid compatibility, the normal inlet pressure and the correct choice of the flow meter range. The pressure drop over the MFM depends on the flow rate and the operating pressure.

The request for quotation form on page 5 contains the relevant fluid specification. Please use in this way the experience of Bürkert engineers already in the design phase and provide us with a copy of the request containing the data of your application together with your inquiry or order.

Ordering table for accessories (connectors are not included in the delivery)

Article	Item no.				
15-pin Electrical Connection					
Sub-D socket 15-pin solder connection	918 274				
Sub-D hood for Sub-D socket, with screw locking	918 408				
Sub-D socket 15-pin with 5m cable, ass. on one side	787 737				
Sub-D socket15-pin with 10m cable, ass. on one side	787 738				
PROFIBUS DP					
M12 plug	918 198				
M12 (coupling) socket	918 447				
PROFIBUS T-Fitting	902 098				
Adapter					
RS232 Adapter for PC connection	654 748				
RS485 Adapter	654 538				
PC 2m extension cable for RS232 9 pin. socket/plug	917 039				
USB Adapter	670 639				
Communications software MassFlowCommunicator	Info. at www.burkert.com				

Dimensions [mm]

Pin Assignment

Plug Sub-D 15-pin

Pin	Connection
1	relay – NC contact
2	relay – NO contact
3	relay - C contact
4	GND 24 -V-supply and binary inputs
5	24 V supply +
6	8 V output (For factory use only!)
7	not used
8	not used
9	Process value output GND
10	Process value output +
11	DGND (for RS232)
12	Binary input 1
13	Binary input 2
14	RS232 RxD (without driver)
15	RS232 TxD (without driver)

Only with fieldbus version

PROFIBUS DP – socket B-encoded M12 (DPV1 max. 12 Mbaud)

Pin	Connection
1	VDD
2	RxD / TxD - N (A-line)
3	DGND
4	RxD / TxD - P (B-line)
5	not used

DeviceNet, CANopen – Plug M12

Pin	Connection
1	Shield
2	not used
3	DGND
4	CAN_H
5	CAN_L

burkert

Note

FC/MFM applications - request f	or quotation				the fields o
ease fill out and send to your nearest	Bürkert sales c	entre* toge	ther with your in	quiry or order	before prin
Company	Contact person			out the form	
Customer No.	Department				
ddress		Tel./Fax			
ostcode/Town		E-mail			
MFC application MFM application	Quantity	у		Required deliv	very date
edium data					
ype of gas (or gas proportion in mixtures)					
ensity [kg/m ³] ¹⁾					
edium temperature [°C or °F]		°C]°F	
oisture content [g/m³]				-	
brasive components / solid particles	no		yes, as follows:		
luidic data					
laximum flow Q _{nom}		I_N/min^{-1}		cm_N^3/min^{1}	
		m _N ³ /h ¹⁾] cm _s ³ /min (sccm) ²⁾	
		kg/h] I _s /min (slpm) ²⁾	
inimum flow Q _{nom}		I_N/min^{-1}		cm_N^3/min^{-1}	
		m_N ³ /h ¹⁾] cm _s ³ /min (sccm) ²⁾	
		kg/h] I _s /min (slpm) ²⁾	
nlet pressure at Q_{nom} $p_1 =$		barg			
utlet pressure at Q_{nom} $p_2 =$		barg			
lax. inlet pressure p _{1max}		barg 🔳			
ipe run (external-Ø)		metric, mm		imperial, inch	
IFC/MFM- port connection	without screw-i	in fitting			
	1/4 G three	ead (DIN ISO 2	228/1)		
	1/4 NPT t	hread (ANSI B	1.2)		
	with screw-in fi	tting			
	sub-base version	on			
mbient temperature		°C			
laterial data					
ealing material	FKM	EPDM	FFKM		
lectrical data					
Output Signal	with standard sign	al wit	h fieldbus		
	🗌 0-5 V		PROFIBUS DP		
	0-10 V		DeviceNet		
	☐ 0-20 mA ☐ 4-20 mA		CANopen		
Please quote all pressure values as overpressures v		heric proceur	e [bara]		
i lease quote all pressure values as overpressures v	with respect to atmos	phenc pressure	= [uaiy]		

To find your nearest Bürkert facility, click on the orange box www.burkert.com

•	•	÷		
In case of special application conditions, please consult for advice.		Subject to alterations © Christian Bürkert Gr	nbH & Co. KG	0905/2_EU-en_00891881