

burkert

A rotork Brand

Fine Controls have been supplying process controls & instrumentation equipment since 1994, & now serves an ever expanding customer base, both in the UK & globally.

We offer a full range of valve & instrumentation products & services, with our product rangerepresenting leading technologies & brands:

Flow: Flow Meters & Transmitters, Flow Switches, Flow Control Valves & Batch Control Systems

Temperature: Temperature Probes & Thermowells, Temperature ransmitters, Temperature Regulators & Temperature Displays

Level: Level Transmitters & Switches

Pressure: Pressure Gauges & Transmitters, Precision & High Pressure Regulators & I-P Converters, Volume boosters.

Precision Pneumatics: Pressure Regulators, I-P Converters, Volume Boosters, Vacuum Regulators

Valves: Solenoid & Pneumatic Valves, Control Valves & Positioners, Actuated Ball, Globe or Diaphragm Valves & Isolation Valves

Services: Repair, Calibration, Panel Build, System Design & Commissioning

A rotorik Brand

Honeywell

Baumer Group

Fine Controls (UK) LTD, Bassendale Road, Croft Business Park, Bromborough, Wirral, CH62 3QL UK Tel: 0151 343 9966 Email: sales@finecontrols.com

Features

- Maintains consistent output under pressure shock and vibration conditions.
- Temperature Compensation provides stable operation under environmental changes.
- Adjustable Positive and Negative Bias permits use with various final control elements.
- High Output Flow meets requirements for most industrial control applications.
- Adjustable Gain allows a single device to cover most industrial and process control requirements.

Operating Principles

The T5221 Transducer is an electropneumatic device that converts a DC current or voltage input signal to a proportional output pressure. This device is made up of four sections, the Signal Conversion Section, the Pneumatic Section, the Ratio Section, and the Booster Section.

The Signal Conversion Section (PC Board) accepts a DC current or voltage. This signal current is applied to a Coil which creates a magnetic force that moves a Flexure Arm.

The Pneumatic Section operates as a force balance system. A Sapphire Ball floats inside a Nozzle and controls the output pressure by exhausting air supplied through an Orifice. This Sapphire Ball acts as a piston exerting a force which is balanced against the force transferred to the Flexure arm by the Coil. Signal pressure from the Pneumatic Section is routed to the underside of the Signal Diaphragm in the Ratio Section. Signal pressure acting on the Signal Diaphragm transmits a force through the lever to the Control Diaphragm of the booster. The output pressure is a function of signal pressure times the ratio of lever arm lengths on either side of the Pivot.

The Booster Section supplies the unit's output pressure. At set point, the lever Arm force acting on the top of the Control Diaphragm is balanced by the force due to the booster output pressure acting on the underside of the Control Diaphragm.

75

Hazardous Area Specifications

			Intrinsically Safe
Factory Mutual (FM) Approvals		TFN5221 NEMA 4X Enclosure	TFI5221 Class I, Division 1, Groups A, B, C and D;
Entity Parameters			Class II, Division 1, Groups E, F and G; Class III, Division 1; Fibers; NEMA 3R Enclosure. <i>(Upright Position ONLY)</i>
$Voc^1 = 40 VDC$ $Isc^2 = 200 mA$	$Ca^3 = O \mu F$ $La^4 = O mH$		
¹ Voc = Open Circuit Voltage ² Isc = Short Circuit Voltage	³ Ca = External Capacitance ⁴ La = External Inductance		
Canadian Standards Association (CSA) Approvals			TCI5221 Class I, Division 1, Groups A, B, C, and D; Class II, Division1, Groups E, F, and G;
Approvals are valid when connected through a Shunt Zener Diode Safety Barrier meeting the following parametric requirements:			Type 3 Enclosure; Rated 1-5 mA, 4-20 mA, 10-50 mA, 1-5 VDC, 1-9 VDC; Temperature Code T4A.
Rated: 28V Maximum 300 Ohm Minimum			

Specifications

Output Range

Model T5221

> Minimum: 10" (25.4 cm) Water Column to 50" (127 cm) Water Column

Maximum: 0-150 psig, [0-10 BAR], (0-1000 kPa)

Supply Pressure

Transducer: 20 + 2 psig, [1.5 + 0.15 BAR], (150 + 15 Kpa) Ratio Relay¹: 250 psig, [17 BAR], (1700 kPa)

Air Consumption 0.36 (0.6 m³/HR) Maximum

Output Capacity (SCFM)

40 (68 m³/HR) Maximum with 100 psig, [7 BAR], (700 kPa) Booster supply

Exhaust Capacity (SCFM)

5.5 (9.4 m³/HR) downstream pressure @ 5 psig, [.35 BAR], (35 kPa) above 20 psig, [1.5 BAR], (150 kPa) setpoint.

Supply Pressure Effect

Transducer: 1 % of Span for a + 2 psig, [.15 BAR], (15 kPa) change.

Ratio Relay: Less than 0.1 psig, [.007 BAR], (.7 kPa) for 100 psig, [7 BAR], (700 kPa) change.

¹ Supply Pressure must be no less than 10 psig, [0.7 BAR], (70 kPa) above max. booster output.

Terminal Based Linearity

+ 0.50 % Full Scale

Independent Linearity

+ 0.25 % Full Scale

RFI/EMI Effect

Less than 0.5% of Span @ 30 v/m class 3 Band ABC (20-1000 mHz) per SAMA PMC 33.1 1978 and less than 0.5% of Span @ 10 v/m level 3, 27-500 mHz Band per IEC Standard 801-3 1984. EMC Directive 89/336/EEC European Norms EN 50081-2 and EN 50082-2.

Impedence / Input Signal Range OHMS

2000 1-5 mA 4-20 mA 120 (Add 332 OHMS for CSA units) $10\text{-}50\ mA\ 50$ (Add 332 OHMS for CSA units) 1-5 VDC 375 1-9 VDC 2550

Ambient Temperature

-40 ° F to + 150 ° F, (-40 ° C to 65.5 ° C)

Materials of Construction

Body and Housing	.Aluminum
Ball and Orifice	.Sapphire
NozzleStair	iless Steel

Model T5221 Electro-Pneumatic I/P, E/P Transducer

Mounting Kits

Mounting Bracket: 15307-1

Model T5221 Transducer Kits & Accessories

Mounting Bracket Kits15307-1 (included with unit)

Catalog Information

¹ Intrinsically Safe units cannot be set for Reverse Acting Mode in field.

² Units shipped calibrated 4-20 mA; Units must be calibrated 10-50 mA in field.

Installation

For installation instructions, refer to the *Fairchild T5221 Electro-Pneumatic Transducer Installation, Operation and Maintenance Instructions,* IS-500T5221.

For operation instructions, refer to the *Fairchild T5221 Electro-Pneumatic Transducer Installation, Operation and Maintenance Instructions,* OM-500T5221.