Temperature Measurement Transmitters for rail mounting

SITRANS TR300 two-wire system, universal, HART

Overview

"HART" to beat - the universal SITRANS TR300 transmitter

- Two-wire devices for 4 to 20 mA, HART
- · Device for rail mounting
- · Universal input for virtually any type of temperature sensor
- Configurable over HART

Benefits

- · Compact design
- · Electrically isolated
- Test sockets for multimeters
- Diagnostics LED (green/red)
- Sensor monitoring open circuits and short-circuits
- Self-monitoring
- Configuration status stored in EEPROM
- Expanded diagnostic functions, such as slave pointer, operating hours counter, etc.
- Special characteristic
- Electromagnetic compatibility to EN 61326 and NE21
- SIL2 (with order code C20), SIL2/3 (with C23)

Application

SITRANS TR300 transmitters can be used in all industrial sectors. Their compact design enables simple mounting on standard DIN rails on-site in protective boxes or in control cabinets. The following sensors/signal sources can be connected over their universal input module:

- Resistance thermometers (2, 3 or 4-wire system)
- Thermocouples
- Resistance-based sensors and DC voltage sources

The output signal is a direct current from 4 to 20 mA in accordance with the sensor characteristic, superimposed by the digital HART signal.

Transmitters of the "intrinsically safe" type of protection can be installed within potentially explosive atmospheres. The devices comply with the Directive 94/9/EC (ATEX).

Function

The SITRANS TR300 is configured over HART. This can be done using a handheld communicator or even more conveniently with a HART modem and the SIMATIC PDM parameterization software. The configuration data are then permanently stored in the non-volatile memory (EEPROM).

Once the sensors and power supply have been correctly connected, the transmitter outputs a temperature-linear output signal and the diagnostics LED displays a green light. In the case of a sensor short-circuit, the LED flashes red, an internal device fault is indicated by a steady red light.

The test socket can be used to connect an ammeter at any time for monitoring purposes and plausibility checks. The output current can be read without any interruption, or even without opening the current loop.

SITRANS TR300 function diagram

Temperature Measurement Transmitters for rail mounting SITRANS TR300 two-wire system, universal, HART

Technical specifications			
Input		Response time T ₆₃	≤ 250 ms for 1 sensor with open circuit monitoring
Resistance thermometer Measured variable	To pose outputs	Open-circuit monitoring	Always active (cannot be dis-
	Temperature		abled)
Sensor type • to IEC 60751	Pt25 Pt1000	Short-circuit monitoring	can be switched on/off (default value: OFF)
• to JIS C 1604; a=0.00392 K ⁻¹	Pt25 Pt1000	Measuring range	parameterizable max. 0 2200 (see table "Digital measuring
to IEC 60751	Ni25 Pt1000		errors")
Special type	over special characteristic (max. 30 points)	Min. measured span	5 25 Ω (see table "Digital measuring errors")
Sensor factor	0.25 10 (adaptation of the basic type, e.g. Pt100 to version Pt25 1000)	Characteristic curve	Resistance-linear or special cha acteristic
Jnits	°C or °F	Thermocouples	
Connection		Measured variable	Temperature
 Standard connection 	1 resistance thermometer (RTD)	Sensor type (thermocouples)	
	in 2-wire, 3-wire or 4-wire system	• Type B	Pt30Rh-Pt6Rh to DIN IEC 584
Generation of average value	2 identical resistance thermome-	• Type C • Type D	W5 %-Re acc. to ASTM 988 W3 %-Re acc. to ASTM 988
	ters in 2-wire system for genera- tion of average temperature		NiCr-CuNi to DIN IEC 584
Generation of difference	2 identical resistance thermome-	• Type E • Type J	Fe-CuNi to DIN IEC 584
deneration of difference	ters (RTD) in 2-wire system (RTD	• Type K	NiCr-Ni to DIN IEC 584
	1 – RTD 2 or RTD 2 – RTD 1)	• Type L	Fe-CuNi to DIN 43710
nterface		• Type N	NiCrSi-NiSi to DIN IEC 584
Two-wire system	Parameterizable line resistance $\leq 100 \Omega$ (loop resistance)	• Type R	Pt13Rh-Pt to DIN IEC 584
Three-wire system	No balancing required	• Type S	Pt10Rh-Pt to DIN IEC 584
	0	• Type T • Type U	Cu-CuNi to DIN IEC 584 Cu-CuNi to DIN 43710
Four-wire system	No balancing required	Units	°C or °F
Sensor current	≤ 0.45 mA	Connection	0.01.1
Response time T ₆₃	≤ 250 ms for 1 sensor with open- circuit monitoring	Standard connection	1 thermocouple (TC)
Dpen-circuit monitoring	Always active (cannot be dis-	Generation of average value	2 thermocouples (TC)
Short-circuit monitoring	abled) can be switched on/off (default	Generation of difference	2 thermocouples (TC) (TC1 – TC or TC2 – TC1)
Measuring range	value: ON) parameterizable (see table "Digi-	Response time T_{63}	≤ 250 ms for 1 sensor with oper circuit monitoring
	tal measuring errors")	Open-circuit monitoring	Can be switched off
Vin. measured span	10 °C (18 °F)	Cold junction compensation	
Characteristic curve	Temperature-linear or special characteristic	• Internal	With integrated Pt100 resistanc thermometer
Resistance-based sensors		• External	With external Pt100 IEC 60571
Measured variable	Actual resistance		wire or 3-wire connection)
Sensor type	Resistance-based, potentiome- ters	 External fixed 	Cold junction temperature can l set as fixed value
Jnits	W	Measuring range	parameterizable (see table "Dig
Connection			tal measuring errors")
Normal connection	1 resistance-based sensor (R) in 2-wire, 3-wire or 4-wire system	Min. measured span	Min. 40 100 °C (72 180 °F (see table "Digital measuring errors")
 Generation of average value 	2 resistance-based sensors in 2-wire system for generation of average value	Characteristic curve	Temperature-linear or special characteristic
 Generation of difference 	2 resistance thermometers in	mV sensor	
	2-wire system (R1 – R2 or R2 – R1)	Measured variable	DC voltage
Interface	(n + nz +	Sensor type	DC voltage source (DC voltage
Two-wire system	Parameterizable line resistance ≤		source possible over an exter- nally connected resistor)
-	100 Ω (loop resistance)	Units	mV
 Three-wire system 	No balancing required	Response time T ₆₃	≤ 250 ms for 1 sensor with ope
 Four-wire system 	No balancing required		circuit monitoring

Open-circuit monitoring

Sensor current

≤ 0.45 mA

Siemens Fl 01 · 2011

Can be switched off

3/35

Temperature Measurement Transmitters for rail mounting

SITRANS TR300 two-wire system, univers	al, HART
Measuring range	parameterizable max100 1100 mV
Min. measured span	2 mV or 20 mV
Overload capability of the input	-1.5 +3.5 V DC
Input resistance	\geq 1 M Ω
Characteristic curve	Voltage-linear or special charac- teristic
Output	
Output signal	4 20 mA, 2-wire with communi- cation acc. to HART Rev. 5.9
Auxiliary power	11 35 V DC (to 30 V with Ex)
Max. load	(U _{aux} –11 V)/0.023 A
Overrange	3.6 23 mA, infinitely adjustable (default range: 3.84 20.5 mA)
Error signal (e.g. following sensor fault) (conforming to NE43)	3.6 23 mA, infinitely adjustable (default value: 22.8 mA)
Sample cycle	0.25 s nominal
Damping	Software filter 1st order 0 30 s (parameterizable)
Protection	Against reversed polarity
Electrical isolation	Input against output (1 kV _{eff})
Measuring accuracy	
Digital measuring errors	see table "Digital measuring errors"
Reference conditions	
 Auxiliary power 	24 V ± 1 %

Auxiliary powe Load 500Ω • Ambient temperature 23 °C · Warming-up time > 5 min Error in the analog output (digi-< 0.025 % of span tal/analog converter) Error due to internal cold junction < 0.5 °C (0.9 °F) Temperature effect < 0.1 % of max. span/10 °C (18 °F) Auxiliary power effect < 0.001 % of span/V Effect of load impedance < 0.002 % of span/100 Ω Long-term drift • In the first month < 0.02 % of span in the first month After one year < 0.2 % of span after one year • After 5 years < 0.3 % of span after 5 years Conditions of use Ambient conditions Ambient temperature range -40 ... +85 °C (-40 ... +185 °F) Storage temperature range -40 ... +85 °C (-40 ... +185 °F) Relative humidity < 98 %, with condensation Electromagnetic compatibility acc. to EN 61326 and NE21 Design Materia Plastic, electronic module potted Weight 122 g Dimensions See "Dimensional drawings" Cross-section of cables Max. 2.5 mm² (AWG 13) Degree of protection to IEC 60529 • Enclosure IP20

Certificates and approvals

Explosion protection ATEX	
EC type test certificate	PTB 07 ATEX 2032X
"Intrinsic safety" type of protection	II 2(1) G Ex ia/ib IIC T6/T4 II 3(1) G Ex ia/ic IIC T6/T4 II 3 G Ex ic IIC T6/T4 II 2(1) D Ex iaD/ibD 20/21 T115 °C
 Type of protection, "equipment is non-arcing" 	II 3 G Ex nA IIC T6/T4

Factory setting:

- Pt100 (IEC 751) with 3-wire circuit
- Measuring range: 0 ... 100 °C (32 ... 212 °F)
- Error signal in the event of sensor breakage: 22.8 mA
- Sensor offset: 0 °C (0 °F)
- Damping 0.0 s

Thermocouples

Temperature Measurement Transmitters for rail mounting

Digital measuring errors

Resistance thermometer

Input	Measuring range	Min. n sured		Digita racy	l accu-
	°C / (°F)	°C	(° F)	°C	(° F)
to IEC 60751					
Pt25	-200 +850 (-328 +1562)	10	(18)	0.3	(0.54)
Pt50	-200 +850 (-328 +1562)	10	(18)	0.15	(0.27)
Pt100 Pt200	-200 +850 (-328 +1562)	10	(18)	0.1	(0.18)
Pt500	-200 +850 (-328 +1562)	10	(18)	0.15	(0.27)
Pt1000	-200 +350 (-328 +662)	10	(18)	0.15	(0.27)
to JIS C1604-81					
Pt25	-200 +649 (-328 +1200)	10	(18)	0.3	(0.54)
Pt50	-200 +649 (-328 +1200)	10	(18)	0.15	(0.27)
Pt100 Pt200	-200 +649 (-328 +1200)	10	(18)	0.1	(0.18)
Pt500	-200 +649 (-328 +1200)	10	(18)	0.15	(0.27)
Pt1000	-200 +350 (-328 +662)	10	(18)	0.15	(0.27)
Ni 25 to Ni1000	-60 +250 (-76 +482)	10	(18)	0.1	(0.18)

Resistance-based sensors

Input	Measuring range	Min. mea- sured span	Digital accu- racy
	Ω	Ω	Ω
Resistance	0 390	5	0.05
Resistance	0 2200	25	0.25

Input	Measuring range	Min. mea- Digital ac sured span racy			
	°C / (°F)	°C	(°F)	°C	(°F)
Туре В	0 1820 (32 3308)	100	(180)	2 ¹⁾	(3.6) ¹⁾
Type C (W5)	0 2300 (32 4172)	100	(180)	2	(3.6)
Type D (W3)	0 2300 (32 4172)	100	(180)	1 ²⁾	(1.8) ²⁾
Туре Е	-200 +1000 (-328 +1832)	50	(90)	1	(1.8)
Туре Ј	-210 +1200 (-346 +2192)	50	(90)	1	(1.8)
Туре К	-230 +1370 (-382 +2498)	50	(90)	1	(1.8)
Type L	-200 +900 (-328 +1652)	50	(90)	1	(1.8)
Type N	-200 +1300 (-328 +2372)	50	(90)	1	(1.8)
Type R	-50 +1760 (-58 +3200)	100	(180)	2	(3.6)
Type S	-50 +1760 (-58 +3200)	100	(180)	2	(3.6)
Туре Т	-200 +400 (-328 +752)	40	(72)	1	(1.8)
Туре U	-200 +600 (-328 +1112)	50	(90)	2	(3.6)

The digital accuracy in the range 0 to 300 °C (32 to 572 °F) is 3 °C (5.4 °F).
 The digital accuracy in the range 1750 to 2300 °C (3182 to 4172 °F) is 2 °C (3.6 °F).

mV sensor

Input	Measuring range	Min. mea- sured span	Digital accu- racy	
	mV	mV	μ	
mV sensor	-10 +70	2	40	
mV sensor	-100 +1100	20	400	

The digital accuracy is the accuracy after the analog/digital conversion including linearization and calculation of the measured value.

An additional error is generated in the output current 4 to 20 mA as a result of the digital/analog conversion of 0,025 % of the set span (digital-analog error).

The total error under reference conditions at the analog output is the sum from the digital error and the digital-analog error (poss. with the addition of cold junction errors in the case of thermocouple measurements). Dimensional drawings

Temperature Measurement Transmitters for rail mounting

SITRANS TR300

two-wire system, universal, HART

Selection and Ordering data	Order No.
Temperature transmitter SITRANS TR300	
For mounting on a standard DIN rail, two-wire system, 4 20 mA, HART, with electrical iso- lation, with documentation on CD	
Without explosion protection) 7NG3033-0JN00
with explosion protection to ATEX) 7NG3033-1JN00
Further designs	Order code
Please add "-Z" to Order No. with and specify Order codes(s).	
Customer-specific setting of operating data (specify operating data in plain text)	Y01 ¹⁾
with test protocol (5 measuring points)	C11
Functional safety SIL2	C20
Functional safety SIL2/3	C23
Accessories	Order No.
CD for measuring instruments for temperature	A5E00364512
With documentation in German, English, French, Spanish, Italian, Portuguese and SIPROM T parameterization software	
HART modem	
With RS 232 connection) 7MF4997-1DA
With USB connection) 7MF4997-1DB
Simatic PDM operating software	See Section 9

► Available ex stock

1) Y01: Quote all details that deviate from the factory settings (see below). D) Subject to export regulations AL: N, ECCN: EAR99H.

Supply units see Chap. 8 "Supplementary Components".

Factory setting:

- Pt100 (IEC 751) with 3-wire circuit
- Measuring range: 0 ... 100 °C (32 ... 212 °F)
 Error signal in the event of sensor breakage: 22.8 mA
- Sensor offset: 0 °C (0 °F)
- Damping 0.0 s

SITRANS TR300, dimensions in mm (inch)

Schematics

Image: constraint of the second se	
Assignments	
1 (+) and 2 (-)	Test terminals (Test) for measurement of the output

i (+) and Z (-)	rest terminals (rest) for measurement of the outpr
	current with a multimeter
3 (+) and 4 (-)	Power supply U _{aux} , Output current I _{out}
5, 6, 7 and 8	Sensor assignment, see schematics

Resistance

Temperature Measurement Transmitters for rail mounting

SITRANS TR300 two-wire system, universal, HART

Thermocouple

SITRANS TR300, sensor connection assignment

Resistance thermometer

burkert

A rotork Brand

Fine Controls have been supplying process controls & instrumentation equipment since 1994, & now serves an ever expanding customer base, both in the UK & globally.

We offer a full range of valve & instrumentation products & services, with our product rangerepresenting leading technologies & brands:

Flow: Flow Meters & Transmitters, Flow Switches, Flow Control Valves & Batch Control Systems

Temperature: Temperature Probes & Thermowells, Temperature ransmitters, Temperature Regulators & Temperature Displays

Level: Level Transmitters & Switches

Pressure: Pressure Gauges & Transmitters, Precision & High Pressure Regulators & I-P Converters, Volume boosters.

Precision Pneumatics: Pressure Regulators, I-P Converters, Volume Boosters, Vacuum Regulators

Valves: Solenoid & Pneumatic Valves, Control Valves & Positioners, Actuated Ball, Globe or Diaphragm Valves & Isolation Valves

Services: Repair, Calibration, Panel Build, System Design & Commissioning

A rotorik Brand

Honeywell

Baumer Group

Fine Controls (UK) LTD, Bassendale Road, Croft Business Park, Bromborough, Wirral, CH62 3QL UK Tel: 0151 343 9966 Email: sales@finecontrols.com